
From idea to impact:
Requirements engineering
 A magazine by ERNI since 1999.

2

Editorial

Dear Readers,

As systems grow more complex, requirements engineering has never been
more important. But what does that really mean? It’s about understanding
stakeholders, designing clear processes, organising data smartly and mak-
ing new technologies like AI work for you – without adding unnecessary
complexity.

In this issue of .experience, we explore how pragmatism and professionalism
go hand in hand – from strategy to architecture to usability. With real-world
examples, we show how lean and efficient engineering can deliver results
without compromising quality or compliance.

Get inspired, discover fresh approaches and take away ideas you can apply to
your own projects. Enjoy the read!

Sincerely,

Pavo Kohler
CEO, ERNI Group

3

Table of contents

02Editorial
By Pavo Kohler, CEO, ERNI Group

04

09The pragmatic architect:
Scaling without overengineering
By Mihaly Fodor, Principal Engineer, ERNI Romania

12Why a designer-developer integration delivers better
results
By Nicola Reinhard, CEO Office, ERNI Switzerland

15From life sciences to diagnostics: Engineering
requirements for a regulated release
By Ares Cabó Carrera, Expert MedTech Consultant and Product Owner, and Carolina Lezama,
MedTech Delivery Manager, ERNI Spain

19Real usability engineering seamlessly integrated for
medical devices
By Simon Brendel, Senior Consultant and Stefan Siegle, Principal Consultant, ERNI Germany

23How to close the gap between end users and IT
By Caroline Badoud, Senior IT Consultant, ERNI Switzerland

How requirements engineering positions itself in
modern software development
By Urs Koepfli, Expert Consultant in Requirements Engineering and Business Analysis, ERNI
Switzerland

26Managing requirements engineering in complex
projects with a digital system model
By Thomas Ruckstuhl, Requirements Engineer, ERNI Switzerland

3

4

How requirements
engineering positions
itself in modern software
development
In the digital age, generating ideas has never been easier. Bringing
them to life in a user-friendly manner is harder. In the course of time,
I see requirements engineering taking on a new set of challenges. With
digital products becoming more sophisticated and development cycles
faster, aligned adaptable requirements are vital.

By Urs Koepfli, Expert Consultant in Requirements Engineering and Business Analysis, ERNI Switzerland

What requirements
engineering (RE) stands
for today

From what I have experienced in
recent years, the era of conven-
tional, heavy documentation and
rigid RE processes is over. Modern
RE requires collaboration between
cross-functional teams, with an abil-
ity to match the developing needs of
the stakeholders, and strong tracea-
bility over the lifecycle of the require-
ments. All this is especially crucial
in a regulated or high-stakes envi-
ronment where misunderstandings
or incompleteness in the require-
ments may cause expensive set-
backs. Throughout my work, one key
transformation has become clear:
RE now needs to scale and integrate

5

seamlessly into agile development
environments without sacrificing the
detail or compliance needed in regu-
lated industries. In this lead article, I
would like to point out what the re-
cent issue of .experience will handle
in more detail: how organisations are
dealing with today’s challenges and
developing RE practices to support
their operational goals in increasing-
ly complex systems.

For whom do we engineer
requirements?

In nearly every project I’ve worked
on, it’s been clear that there’s never
just one ‘customer’. There are users,
buyers, maintainers, regulators and
developers, and they all have their
valid perspectives. Taking all of them
into account creates complexity. And
this is where RE steps into the scene,
bringing structure to the complexity.

Stakeholder management, in my
view, goes far beyond ticking boxes
and collecting sign-offs. It’s about
actively discovering what matters
to each stakeholder and translat-
ing those insights into a shared di-
rection. It is about identifying all

legitimate voices in the process,
learning what they are aiming for
and ultimately generating a common
direction that guides development.
From the field technician working in
the rain (or any other weather condi-
tions), wearing gloves and trying to
compress a full location on an app;
to the Governance, Risk and Com-
pliance Officer who is responsible
for protecting information in terms
of GDPR; every one of them matters,
and all provide critical information
that decides future success.

In one of the projects I was part of,
the shift in the role of requirements
engineering became particularly
clear. Initially, the team expected RE
to simply collect and document the
requirements. But as we progressed,
it became evident that our real value
lay elsewhere. Acting as the custom-
er’s voice within the solution team,
we helped translate vague expecta-
tions into tangible priorities. Togeth-
er with developers, designers and
business stakeholders, we worked
out what should actually be built –
not just what was technically possi-
ble, but what would truly bring value
and be usable in the customer’s real

context. That’s when I realised: re-
quirements engineers are no longer
gatekeepers of specifications. They
are facilitators of shared understand-
ing and direction.

“It’s not about building
what the customer says
they want – it’s about un-
derstanding their true goals
and helping to find and im-
plement the best solution.”

RE is the bridge between business
intent and technical realisation. It
translates abstract ideas into struc-
tured inputs for development. And
in agile teams especially, RE ensures
that rapid iterations don’t lose sight
of the overall view. Perhaps most im-
portantly, it helps teams make better
decisions early when change is still
affordable and the impact high.

6

1. Elicitation
Discover real needs
behind the requests
through focus group

interviews, workshops
and observation.

4. Management
Continuously track
changing priorities
and ensure tracea-

bility throughout the
lifecycle.

In more agile situations, RE changes
from a very heavy lift at the front to
more continuous collaboration as
the work transitions from documen-
tation into general continuous inter-
action and information sharing with
stakeholders. Also, the capabilities of
tools evolve – from AI-assisted anal-
ysis of regulatory texts to a collabo-
rative prototyping platform always
with the one goal in mind – to ensure
that the team is building the right
solution.

The first 100 hours –
Laying a solid foundation

From my experience at ERNI, I’ve
seen again and again how the first
days of a project determine its over-
all success. One case comes to mind
where this became very clear. We
were working together with a cus-
tomer in the infrastructure sector,
and the task seemed straightforward
at first glance: deliver a mobile app
for field technicians to document
maintenance activities on site.

The customer expressed a clear idea
of what they wanted, at least on the
surface. A sleek interface, fast perfor-
mance and seamless backend inte-
gration. But during the initial discus-
sions, our requirements engineering
team dived deeper. We conducted
field visits, spoke directly with the
technicians and tried to understand
how and where the app would be
used. What we discovered changed
almost everything.

Most of the technicians worked out-
doors, year-round, often in cold and
wet conditions. They wore gloves,
operated in low-light environments,
and had minimal time to navigate
complex menus. This was not cov-
ered in the original briefing. Had
we rushed into development based
only on the initial specifications, we
would have built something techni-
cally sound but practically unusable.
In fact, a previous attempt by anoth-
er vendor had failed for precisely this
reason. The UI simply didn’t work in
real-world conditions.

This experience reinforced a princi-
ple we hold in our projects: you need
to build the right foundation early.
Or, as I often say:

“If you’re building a
four-storey house, you
need a different foundation
than for a garden shed.”

Making the system work

RE is not homogenous; it consists of four interconnected tasks:

2. Documentation
Requirements are cap-
tured in a way that is

readable, testable and
changeable, mainly
through structured

text or model-based
approaches.

3. Validation
Validation ensures that

what was captured is
addressing the right

problem.

7

Clarifying goals, constraints and the underlying drivers for the
project.

1.	 Understanding the business
context and objectives

2.	 Engaging all relevant
stakeholders

3.	 Defining the problem space

4.	 Eliciting high-level
requirements

5.	 Structuring and prioritising
early inputs

6.	 Scoping the initial solution

7.	 Communicating clearly with
the team

8.	 Assessing risks and
feasibility

From end users to compliance officers, to ensure no critical
voice is missed.

Capturing the pain points, system boundaries and environmen-
tal conditions.

Focusing not just on features but also on usability, performance
and constraints.

Using proven methods to separate must-haves from
nice-to-haves.

Defining what will be delivered and, just as importantly, what
won’t.

Establishing common language, shared tools and aligned
expectations.

Surfacing any technical, organisational or regulatory risks as
early as possible.

In our RE practice, we treat the first 100 hours of any project as a critical window in which to explore, understand and
align. The steps we take during this phase typically include:

7

8

That project succeeded not because
we followed a checklist, but because
we took the time to listen, observe
and question before building. That,
to me, is the essence of requirements
engineering done right.

The future of requirements
engineering

RE as a discipline hasn’t changed
at its core – but its context certainly
has. It will no longer be a phase – it
will be a continuous, iterative ac-
tivity that keeps pace with product
development. In agile environments
and while leveraging DevOps pipe-
lines, requirements will evolve in
real time and therefore will need
tools and practices to effectively ac-
commodate continuous refinement,
stakeholder consent and traceability.
As system complexity increases (par-
ticularly in regulated domains such
as MedTech and automotive), RE
will shift further towards formalised
models and Model-Based Systems
Engineering (MBSE) to manage the

interdependencies. Visual models
will reduce communication over-
head across business, technical and
compliance teams.

Future RE will not only be
about technical specifica-
tions and functional scope
but also more broadly
about understanding user
needs, outlining business
objectives and delivering
value.

Agile ways of working, the prolifer-
ation of tools, and especially AI are
reshaping the ‘how’ of RE. But the
‘why’ remains the same: building
shared understanding. A frequent
question we hear is whether AI will
replace RE professionals. ‘Replace’
is not the right term; a more prop-
er one would be ‘augment’. If AI can
summarise lengthy compliance doc-
uments or create draft user stories
in a speedier manner, why not use

it? Yet one thing AI cannot replace is
the human judgment of balancing
business objectives, user needs and
technical realities. This remains the
job of requirements engineers, now
and into the future.

Conclusion

Requirements engineer-
ing is no longer just about
specifications; it’s about a
shared vision. It represents
the foundation for agile,
scalable and human-centric
software. Today, RE is less
of a defined set of roles, and
more about flexible collab-
oration. It is increasingly a
function that embeds not
just a process, but a way of
thinking into product teams.

9

The pragmatic architect:
Scaling without
overengineering
Complexity is tempting, especially at the start of a project, when ideas
are flowing and architectural ambitions run high. But without clear
priorities and precise requirements, systems end up built for hypothet-
ical scenarios rather than real benefits. A pragmatic, YAGNI-inspired
approach helps you start lean while staying scalable.

By Mihaly Fodor, Principal Engineer, ERNI Romania

Try to imagine a situation many of
us know too well. Your software en-
gineering partner has just received
your new project assignment, and
the kick-off meeting is charged with
enthusiasm. As the customer, you
arrive with a bold idea, an ambitious
delivery date, and the hope that
smart technology will rise to your
challenge. Within minutes, the white-
board disappears under sticky notes
and marker lines: boxes, arrows, ac-
ronyms, tool names, deployment
diagrams. Voices discuss Kubernetes
clusters, serverless functions and
the merits of microservices versus a
monolith. Passion grows, and in less
than an hour, the team is deep in ar-
chitectural debate while user stories
still sit blank. Then someone finally
asks, “What exactly should the user
achieve in version one?” The room
goes quiet. That silence exposes a
familiar hazard: when enthusiasm
outpaces focus, the team risks de-
signing for imagined futures rather
than present needs. If requirements

remain vague and unprioritised, ar-
chitecture becomes guesswork, and
the solution ends up optimised for
hypotheticals instead of real value.

The temptation of
complexity

Requirements engineering is more
than a checklist item; it is the foun-
dation that supports a reliable ar-
chitecture. Teams need a practical,
well-defined scope that separates
what must be delivered today from
what can wait for tomorrow. This
clarity protects the project from un-
necessary complexity. Sound archi-
tecture begins with a clear purpose,
not with a tool or pattern.

Yet many projects still begin with a
wish list: “We need the full stack.”
Microservices, serverless functions
and multi-cloud setups appear be-
fore anyone writes a single user sto-
ry. I once worked on a project where
the customer believed an elaborate
cloud design would boost B2B sales,
while the solution to their challenge
was simply a dependable ordering
system. The gap between perceived

10

needs and actual needs is where complexity grows. Here
the YAGNI principle – You Aren’t Gonna Need It – proves
its value. YAGNI keeps the team focused on delivering
only what is necessary, when it is necessary – and it
grounds every architectural decision in real require-
ments instead of assumptions.

These choices are usually driven by fear of future un-
knowns, blurred non-functional goals, or a culture
that rewards complexity. The results are clear: slower
delivery, fragile and complicated systems, higher op-
erating costs, and decision fatigue that drains team
energy. By the time a project team sees it has tried to
do too much, the cost of change is already high.

The pragmatic process

My approach to requirements engineering is practi-
cal and tied to real-world limits and business value.
It starts with orientation: a detailed review of every
document, removing irrelevant claims to expose the
few requirements that truly matter. Once clear, I move
to sizing, checking core metrics such as expected us-
ers, data volume, service levels and release pace. Any
unclear figure becomes an immediate question for
the customer. I rate functional scope with T-shirt siz-
ing (XS to XL), a quick method that flags oversized or
vague demands early.

With this baseline, I sketch a minimal viable architec-
ture – often just three boxes and two arrows. Anything
that cannot fit on the whiteboard is challenged; if it
does not fit, it likely does not belong in the day-one
plan. Before estimates, a peer reviews the sketch and
tests every assumption. The last checkpoint is to re-
turn to the business goal. If a design element does
not support the main KPI, we drop it. The result is a
lean, validated foundation shaped by evidence, not
speculation.

1. Unrealistic forecasts
Designing for ‘millions of users’
when the first-year estimate is
only a few hundred.

2. Imitation without
context
Adopting the architecture of com-
panies such as Netflix without
matching their scale or budget.

3. Hidden cost traps
Selecting a pay-per-request
serverless model even though
the workload is steady and al-
ways running.

4. Scope drift
Adding nice-to-have features that
quietly become mandatory and
inflate complexity.

Four common patterns causing
complexity

Why over-engineering happens

Over-engineering often starts with good intentions but
misplaced assumptions. Four patterns appear again and
again:

11

 A YAGNI-inspired reference case

A mid-sized manufacturer of sun-protection systems once asked us to design
an AWS solution based on microservices, auto-scaling and separate teams for
each service. The aim was to ‘future-proof’ a new ordering platform and keep
it ready for growth. On paper, the plan looked modern and solid.

We soon learned that expected peak traffic was less than fifty concurrent us-
ers, far below the level that justifies a distributed setup. Even our first draft
still contained load balancers and stateless services, assuming growth that
was years away. The first AWS bills showed the flaw: the system was tackling
problems that did not yet exist.

Using a YAGNI mindset, we removed the excess. We re-
placed the spread of microservices with a modular mon-
olith, keeping clear internal boundaries so parts could be
split later if demand rose. Load balancers went away, and
deployment became straightforward.

The company met every business goal at roughly one-fifth of the former infra-
structure cost. Time to market improved, maintenance became simpler and
the team could focus on core features instead of cloud overhead. Just as im-
portant, the platform can still grow when real demand appears.

This case shows that sound architecture starts with what is necessary, not
with what is fashionable.

Lessons learned

The lean approach works because it stops scope from ex-
panding too early. Clear limits produce simpler designs and
more accurate estimates. Most pushback comes from a fear
of lock-in. I address this by showing the defined seams where
parts can be swapped later, but only when a measurable KPI
demands it. In highly regulated or safety-critical fields, such
as real-time trading or medical devices, extra robustness
may be required from day one. Even then, every added layer
should have a written, testable reason to exist.

12

Why a designer-
developer integration
delivers better results
In a recent project, I managed the modernisation of a key enterprise ap-
plication. The goal was clear: Update an outdated tech stack to enable
scalability and maintainability. What began as a technical upgrade soon
became a lesson in cross-functional collaboration, especially between
software development and design.

By Nicola Reinhard, CEO Office, ERNI Switzerland

A dual focus with one timeline

At the beginning, we defined an ambitious yet achievable
timeline. We aligned it carefully with development capac-
ity and validated it with business stakeholders. We pri-
marily focused on upgrading the outdated technologies
without altering the existing functionalities. Developers
were laser-focused on this, knowing that success meant
delivering a state-of-the-art application on time.

However, alongside the tech upgrade, we aimed to im-
prove the user interface and the overall experience to cre-
ate a modern look and feel that would delight end users.
Therefore, a UX designer joined the team. While this was
a strategic decision, it added a second layer of complexi-
ty. What was the risk? A potential conflict of interest and
timing.

Designers wanted to rethink interactions, layouts and
flows. Developers had already started to rebuild the UI
on the new stack, and they had design opinions of their
own. Taking design revisions into consideration meant
additional work and adjustments – none of which had

13

been included in our original timeline. This disjointed ap-
proach threatened to result in a fragmented experience
for the user and potential friction within the team.

Inspired by factory floor thinking

A turning point came unexpectedly, while reading Wal-
ter Isaacson’s biography of Elon Musk. Musk placed his
design team on the factory floor, asking them to resolve
breakdowns with the engineers in an iterative and collab-
orative way. This integration of problem solving across
design and engineering disciplines inspired me.

I knew we needed the same kind of partnership. Design-
ers and developers couldn’t work in silos. We had to re-
move the handover mindset and foster a shared owner-
ship model.

Real integration, not just collaboration

As soon as the design team was on board, we ensured
they fully participated in all development meetings. We
established a weekly design meeting to align on priori-
ties and decisions. We captured all design decisions on
a shared Miro board, making all decisions visible, organ-
ised and collaboratively maintained. Three success fac-
tors emerged:

Ownership through design
authority
All significant design decisions were funnelled
through the designers. This didn’t mean blind
execution – this meant a thoughtful discus-
sion based on rationale and principles.

Shared understanding
Developers contributed to decisions on de-
sign. Their early involvement meant that we
could ensure feasibility and minimise imple-
mentation time.

Visible alignment
By reviewing decisions collectively and con-
tinuously, we aligned design intent with tech-
nical constraints and timelines.

14

The navigation dilemma

A real test of our collaboration came
early. Before the designers joined,
we had finalised the application’s
new navigation system. Upon arrival,
they flagged several concerns: it was
unintuitive, inefficient due to dense
screens, and failed to address critical
user paths. What was the challenge
then? It was already implemented,
and our backlog was full.

Instead of derailing the project or
forcing a compromise, we agreed to
postpone changes to the navigation.
We decided to focus on the technol-
ogy migration first, and revisit the
navigation once capacity allowed.
This deliberate deferral paid off. Not
only did we meet our deadline but
we also successfully redesigned the
navigation just ahead of go-live.

Performance, speed and
quality

Initially, bringing the designers in lat-
er posed a challenge. But the way we
integrated them into the team made
the difference. Developers respected
their decisions because they were
well-grounded and included their
concerns. The designers, in turn,
evolved with the team – eventual-
ly even contributing directly to the
codebase.

This high degree of collaboration
drove faster implementation and a
more cohesive user experience. The
team felt ownership of both the de-
sign and the code, and the end prod-
uct reflected that alignment.

Goal: Creating digital
experiences

Design and development don’t
need to be separate tracks – they
work best when they are tightly
interwoven.

Integration doesn’t mean
all designers have to start
coding. It means fostering
dialogue, trust and mutual
respect from the beginning.

Developers bring deep insights into
feasibility and user expectations. De-
signers bring the vision of usability

and aesthetics. Together, they can
build more than just functional soft-
ware; they can craft exceptional digi-
tal experiences.

My advice to fellow project managers
and technology leaders: don’t treat
design as a phase or an add-on. Em-
bed it. Own it. And watch your teams
and your applications thrive.

15

From life sciences to
diagnostics: Engineering
requirements for a
regulated release
Transforming a life science device or research-use-only (RUO) device
into a medical one is a process full of opportunities and complexities.
In one project, we supported a company in converting a lab diagnostics
device for clinical use. This article highlights the journey in a regulat-
ed setting and how expertise drives success.

By Ares Cabó Carrera, Expert MedTech Consultant and Product Owner, and Carolina Lezama, MedTech Delivery
Manager, ERNI Spain

The challenge

While the core technology appeared to be the same,
patient safety, legal liability, traceability and other doc-
umentation changed almost everything. The regulatory
requirements, expectations and scope of controlled pro-
cesses expanded vastly – and with this, the expectations
on the product developers changed, shifting from speed
or flexibility of development to full accountability and
validated traceability.

In this instance, the challenges became evident and
were multifaceted – fragmented requirements; the ev-
er-changing needs of stakeholders; deadlines; ISO, FDA
and EU MDR compliance; and the awareness of the need
to prevent costly rework and compliance failure.

16

The process: A journey to regulation

Our approach to these challenges was requirements en-
gineering (RE). RE provided a traceable and structured
foundation from the start so we were able to keep techni-
cal portions of the development aligned with regulatory
needs, manage change appropriately and effectively, and
ensure that no critical detail was overlooked or forgotten.
RE served to be the lever moving us from scientific dis-
covery to clinical compliance.

Transforming software from a life science research tool
into a regulated diagnostic medical device is not a linear
upgrade; it’s a fundamental shift in mindset, methodolo-
gy and responsibility. This transformation journey took
our teams from the relatively flexible realm of scientific
software into the rigour of regulated diagnostics, where
every function must be justified, every risk mitigated and
every line of code traceable.

In regard to research-use-only products,
teams often optimise for speed, function-
ality and exploration.

Documentation is less heavy, testing is pragmatic and
risk management is rather informal. In contrast, a med-
ical device – subject to FDA and IVDR requirements – de-
mands process maturity, systematic traceability and ver-
ified quality at every stage.

That meant rethinking how we worked, from how we
documented and validated user needs to how we verified
software behaviour under real-world clinical conditions.
Risk management was no longer a background activity; it
became embedded in every backlog refinement and de-
cision checkpoint.

A life science device is a piece of equip-
ment, tool or instrument used in bio-
logical, biochemical, pharmaceutical or
laboratory research. It supports scien-
tific discovery, drug development, diag-
nostics and biomanufacturing. It is not
always in direct contact with patients.

Difference between a life
science device and a medical
product

Medical products include, among other
things, instruments, objects, substanc-
es and software that are used for thera-
peutic or diagnostic purposes in humans.
They are intended for clinical use, mean-
ing on or in patients, and regulated by
health authorities like the FDA (US), EMA
or MDR (EU) and classified by risk levels
(e.g., Class I, II, III).

Medical product

Life science device

17

Reimagining agile in a regulated world

Agile principles remained at the core of our approach,
but we needed to adapt them to fit a compliance-driven
environment. Instead of fast iteration at the expense of
traceability, we designed a hybrid agile model that pre-
served adaptability while ensuring full traceability, vali-
dation and compliance.

•	 Creating incremental release candi-

dates instead of one monolithic launch.
The modularity in the architecture had
the purpose of optimising the code and
enhancing future maintenance.

•	 Defining minimum viable products
(MVPs) that were not only functionally
usable but also regulatory-compliant.
This way, we were able to deliver via-
ble results to the customer at an early
stage.

•	 Accepting that definition of done went
far beyond ‘working software’. Each
user story had to be linked to validated
requirements, test cases, acceptance
criteria and documented verification
outcomes. If it wasn’t testable and doc-
umented, it wasn’t done.

With retrospective, in a big project like this with a hun-
dred team members distributed over multiple sites
across Europe, we would choose a different agile frame-
work – most likely SAFe – due to reasons like too many
diverse teams or not all teams following the same itera-
tion process.

Risk at the core

We integrated risk management directly into backlog re-
finement. Stories were sliced not just by business value
or complexity, but by risk exposure and regulatory criti-
cality. For example, data integrity-related features – such
as audit logs and result traceability – were front-loaded
in the roadmap due to their impact on patient safety and
compliance. This helped the team prioritise under pres-
sure, especially when the scope had to be negotiated
due to tight timelines. The MVP was not the bare mini-
mum – it was the minimum certifiable product.

18

Product ownership redefined

In this setting, product owners (POs) were more than feature gatekeepers.
They became translators between stakeholders, compliance teams and de-
velopers, ensuring that evolving customer needs were interpreted correctly
and delivered in line with regulatory expectations. POs and requirements
engineers worked side-by-side to bridge clinical needs with development
constraints, constantly verifying that each deliverable could withstand reg-
ulatory scrutiny – before it reached the end of a sprint, let alone the market.

Documentation: A living organism

Throughout this project, we embraced documentation not as overhead, but
as a living asset – a dynamic, evolving body of knowledge that enabled safe
decision making, ensured regulatory compliance and unlocked scalability.
Each release Candidate was treated as a self-contained milestone. Rather
than front-loading all documentation or postponing it until a final release, we
built it up incrementally and consistently. Each user story tied into a broader
user journey. In this way, documentation became a tool for alignment and
quality, not just compliance. It allowed every stakeholder, from developers
to regulatory reviewers, to understand what was built, why it mattered and
how it was verified.

Solution

Together with our customer, we delivered not only a compli-
ant and validated device but one that is modular, scalable and
ready for the global market.

We are happy the product is now on the market – feedback
that we have received has been positive, not only from internal
stakeholders but also from end users in clinical environments
who now benefit from the device.

Among the key lessons we learned, we would say that early
alignment on product requirements is critical; agile practices
must be tailored, not transplanted, into regulated environ-
ments; and above all, requirements engineering and docu-
mentation must be treated as strategic enablers – not admin-
istrative burdens.

19

Real usability
engineering seamlessly
integrated for medical
devices
In medical device development, usability engineering often plays a mi-
nor role, treated as a downstream task before regulatory submission.
Yet integrating usability early creates safe products that stand out.
This article shows how usability drives efficiency, quality and market
success, even in regulated environments.

By Simon Brendel, Senior Consultant and Stefan Siegle, Principal Consultant, ERNI Germany

Usability – Often
underestimated, rarely done
right

Regulatory requirements – such as
those defined in IEC 62366, MDR (Med-
ical Device Regulation), IVDR (In Vitro
Diagnostic Medical devices and Repeal-
ing Directive) or the FDA Human Factors
Guidance – demand a minimum level of
usability, primarily aimed at avoiding
harm. However, meeting these require-
ments alone is not enough to create a
good product. These standards require
that risks are addressed – but not that
a product is intuitive, efficient or even
enjoyable to use. This underestima-
tion often leads to usability activities
being started too late or approached
half-heartedly in the MedTech context
– resulting in costly redesigns or, in the
worst case, flawed products.

20

Start early, prioritise wisely

Whether it’s chief physicians, lab workers or nurses –
every system has multiple user groups with different
tasks and needs. Ignoring this diversity puts the accept-
ance of the product by entire user groups at risk – and
can ultimately lead to failure.

Another major barrier to establishing genuine usability
across the MedTech sector is that the people who actu-
ally use the products are often not the ones who decide
which product to buy. Instead, purchasing decisions are
typically made by procurement teams or clinical lead-
ership – individuals who rarely work directly with the
devices. As a result, usability rarely becomes a decisive
factor in purchasing decisions, even though it plays a
critical role in daily clinical routines when it comes to
safety, efficiency and acceptance.

In fact, efficiency gains achieved through good usabil-
ity can make a significant economic difference in the
long term. So why isn’t this topic given the attention it
deserves?

Compliance as a byproduct of good
processes

Usability engineering should be an integral part of a
solid requirements process – not something treated as
a nice-to-have. Teams that analyse user contexts early,
develop task models, create personas, and test iterative-
ly will naturally generate the artifacts needed for regu-
latory approval. These deliverables don’t arise from a
sense of obligation, but as a logical outcome of a sound
development process – grounded in real insights, not
assumptions.

From users to artifacts: A lean process

Figure: The ERNI Medical Usability Process builds on the human-centred design process defined in ISO 9241-210 and adds key elements
required for the approval of medical devices.

The process we developed to prevent real usability en-
gineering from being neglected in MedTech projects
is deliberately based on the human-centred design
process as defined in ISO 9241-210. This approach is
widely used in industries where high-quality usability
has historically been given far more weight than in the
medical device field, such as e-commerce, gaming and
entertainment or B2C app development.

Our process follows the classic steps of human-cen-
tred design: planning, understanding and specifying
the context of use, specifying the user requirements,
and producing design solutions. When evaluating pro-
totypes and other development artifacts, we differen-
tiate between formative and summative evaluations.
Our approach works equally well within V-models, ag-
ile environments or hybrid frameworks.

Planning the human-
centred design process

Understanding and
specifying the context

of use

Specifying user
requirements

Development of solutions
to meet user requirements

Summative
evaluation

Formative
evaluation

System meets user
requirements

20

21

•	 From DIN EN ISO 9241-210
Human-centred quality objectives, resource plan, schedule,
user group definitions

•	 From DIN EN ISO 9241-210
User group profiles, task models, personas, scenarios of use, user journey maps

•	 From DIN EN 62366-1
Safety and use errors, use specification, hazard-related use scenarios, known and foreseeable hazards
and hazardous situations

•	 From FDA Human Factors Guidance
Description of the context of use (composed of the other artifacts in this step)

•	 From DIN EN ISO 9241-210
User needs, user requirements

•	 From DIN EN 62366-1
User Interface Specification (Requirements), User Interface Evaluation Plan, Critical Task Description

•	 From DIN EN ISO 9241-210
Prototypes, scenarios of use, storyboards, user journey maps, task models, information architecture,
navigation structure, style guide

•	 From DIN EN ISO 9241-210
Evaluation reports

•	 From DIN EN 62366-1
No specific artifacts required – however, all evaluation activities and results must be documented in
the Usability Engineering File, which serves as a structured record of all usability-related activities.

•	 From FDA Human Factors Guidance
HFE/UE Report, Description of User Interface, Process and Interaction Documentation

If all steps are executed carefully and at the right time, the process naturally results in both widely accepted usability
deliverables and all artifacts required by regulatory standards:

21

1.	 Planning the human-centred design process

2.	 Understanding and specifying the context of use

3.	 Specifying the user requirements

4.	 Producing design solutions to meet user requirements

5.	 Formative and summative evaluations

22

Usability engineering is requirements
engineering

In practice, usability engineering and requirements engi-
neering are difficult to separate. Insights gained through
human-centred design – interviews, observations and
context analyses – directly feed into requirements. Many
findings from usability activities become critical inputs
for defining requirements. That’s why these two disci-
plines should be closely integrated, ideally combined in
a single role or a tightly aligned team. A project without a
dedicated usability lead misses out on valuable potential
– and risks failure.

In order to align both disciplines effectively and to ensure
good product design is not lost in the face of perceived
regulatory complexity, it is important to regularly reflect
on the following questions:

Conclusion

Usability is not an add-on for regulato-
ry approval; it is a strategic success fac-
tor, provided it is taken seriously. In our
projects, we often see the differences
between formally fulfilled requirements
and true usability. With the ERNI Medical
Usability Process, we support our clients
in asking the right questions from the
very beginning, consistently involving
users and viewing usability not as a duty,
but as a tool. That’s how we jointly create
products that are not only safe but also
compelling and commercially successful.

Do I question what others take for
granted?

Is important information being lost
in communication – like a game of
telephone?

Have I truly understood the real
problem?

Could I draw a detailed picture of
how and where my product is used?

Can I describe each step of the tasks
users perform with my solution as a
tool?

Do I accept a single person as a rep-
resentative of an entire user group?

Have I personally observed the us-
ers and the context in which the
product is used?

Have I considered all relevant user
groups – and involved them from
the start?

Am I relying on so-called experts
without having spoken to actual
users?

Am I doing usability engineering
from behind a desk?

23

How to close the gap
between end users
and IT

By Caroline Badoud, Senior IT Consultant, ERNI Switzerland

When IT feels out of reach

Technically, development teams might have built a solid
IT application. But there will still be this one challenge:
in case the end users are resistant to adopting the new
system, the finalisation of the project might leave a bad
taste in developers’ mouths. Bridging the gap between
IT and end users is essential for a success story. It repre-
sents one of the main focuses of a requirements engineer.

In this article, I’m focusing on bringing IT teams and end
users together, especially during the delicate phase of de-
ploying a digitalisation system. This is the crucial phase

The success of digitalisation projects depends not only on technology
but also on end user acceptance, especially when users are less tech-sav-
vy. Feeling unheard causes frustration, but it is never too late to bridge
the gap between users and IT, even in later development stages.

where users start adopting the new system and start inte-
grating it into their daily business. The users start loving
the system or hating it. I’m convinced that it is never too
late to close an existing gap between certain users and
IT, even at later stages of development. Nevertheless, the
positive adoption of a new system requires a structured
approach to include everyone and make IT easily under-
standable. It requires a collaborative mindset of the de-
velopment team, as well as appropriate planning, to en-
sure a smooth rollout for every user. In this article, I share
insights on how a potential gap between users and IT can
be closed – with minimal effort, cost and resistance.

How to facilitate end user acceptance,
even at a later stage of development

The approach lies in creating a culture of mutual respect
and continuous dialogue. Personally, I approach projects
with a focus on building trust, understanding business
needs as deeply as possible and developing solutions to-
gether with the users – not just for them.

Organise focus group dialogues to identify potential con-
cerns. Based on these insights, a tailored set of measures
can be defined. I am convinced that the following six
steps can significantly contribute to bridging the gap be-
tween end users and IT.

24

Raising engagement, on
site, while keeping groups
small

Building trust starts the moment
you show up in person where the
users are located. Whether it is on a
production floor, in logistics or else-
where, IT teams need to meet users
at their actual workplace. That can
also mean gearing up in a safe man-
ner and stepping out to where the IT
system will later be used. Physical
presence shows true interest in us-
ers’ daily reality.

Engage the users of the application
in conversation in focus groups. Try
to keep the number of participants
small. In fact, the users will be more
likely to participate actively, start di-
aloguing, ask questions and feel en-
gaged in a small group. It is the best
way to grasp workflows, concerns
and pain points first-hand far beyond
remote calls or ticketing systems.

Speak the user’s language

Specifically for multi-language ap-
plications, it is a big challenge to
include every end user. No user
should feel excluded just because
he or she doesn’t speak the same
language as the development team.
This exclusion leads to user frus-
tration and possibly to resistance
against the new system. Whenever
possible, we recommend having a
consultant on your side who is mul-
tilingual and an IT specialist; it can
enormously improve user satisfac-
tion and motivation.

It’s not only about the spoken lan-
guage but also the vocabulary
used. Technical teams frequently
underestimate what effects their
vocabulary may have. IT jargon can
be overwhelming if the end users
are not tech-savvy. My motto is:
clarity connects. Complexity does
the opposite – it tries to impress.
And that for sure is not the main
goal of good communication. Us-
ing the same terms and concepts
that users are familiar with helps
to create a shared understanding.
It signals that you’re on the same
level, not speaking from far away.
This doesn’t mean ‘dumbing things
down’ – it means choosing empathy
over ego.

Trainings tailored to user
needs

It is obvious that the best train-
ing approach for users is to con-
duct practical, hands-on sessions
where users start interacting with
the live system early on. This prac-
tical approach boosts motivation
and comprehension by focusing
on real use cases. But the success
does not lie only with the content
of the training; its schedule is also
important. Often, training and roll-
out schedules are determined by
IT, without fully taking users’ op-
erational constraints into account.
Involving the groups of users in
scheduling the rollout according
to their readiness fosters goodwill
and accelerates adoption, creating
a user-centred and flexible imple-
mentation process.

1. 2. 3.

24

25

A smooth rollout instead
of a Big Bang

Performance and load tests of the IT
system are probably the most chal-
lenging to simulate in a develop-
ment environment; sometimes, the
practical experience in live opera-
tion is different from the simulation.
No developer wants to experience a
system overload in production. The
recommended approach is a gradual
rollout, adding users incremental-
ly week by week. This allows close
monitoring of system performance
and proactive handling of issues.
Early adopters help identify bugs so
that by the time more hesitant users
join, the system runs smoothly, and
adoption proceeds with minimal
disruption.

Make ‘operations’ an inte-
gral part of the develop-
ment team

Often, developers prefer developing
new features rather than maintain-
ing an existing system. As a facili-
tator, you should encourage your
development team to love user
feedback from operations. Make
feedback from the users visible, or-
ganise a regular operations meet-
ing within the team, prioritise the
feedback and let it flow into the de-
velopment plan. Ensure that each
development ticket includes steps
for testing, user documentation or
communication. Over time, this ap-
proach not only improves system
stability but also helps teams see
the value of user input, fostering a
collaborative mindset.

Maintain close collabora-
tion after the rollout

The work doesn’t end once the sys-
tem goes live – in fact, that’s often
when the most valuable dialogue
begins. Make it a priority to main-
tain strong collaboration over time
by holding regular user meetings
where experiences can be shared
openly. Users talk about what’s
working and where challenges
remain, while the development
team presents current and up-
coming features and actively seeks
feedback.

It is especially effective to involve
enthusiastic users as pioneers, giv-
ing them recognition and a voice
in shaping future improvements.
This ongoing engagement builds
a sense of ownership, helps de-
velopers understand the ‘why’ be-
hind requests, and turns users into
ambassadors for the system. The
pioneer users become motivators
for the potentially more hesitant
colleagues in their team.

Conclusion

Mainly through these six simple measures, the possibility of a divide between IT teams and end users
can be reduced – leading to higher satisfaction and stronger system adoption. Repeatedly, I’ve learned
that trust and open communication establish the foundation of any successful project. When users feel
seen, heard and genuinely involved, they are far more likely to embrace and support the end result.
This might sound self-evident, but in practice, it takes consistent effort, planning and commitment
from everyone involved. By fostering such an environment, users become motivated partners in digital
transformation, laying a strong foundation for future innovation within organisations.

4. 5. 6.

25

26

Managing requirements
engineering in complex
projects with a digital
system model

By Thomas Ruckstuhl, Requirements Engineer, ERNI Switzerland

In developing complex medical systems like automated diagnostic de-
vices or patient monitoring platforms, precise requirements capture is
both a regulatory and design necessity. Document-driven approaches
fall short. We show how requirements engineering as a strategic mod-
elling discipline lays the foundation for digital system models.

The impact of complexity

Each regulated area has its own set of specific require-
ments that demand intense attention to detail. Especial-
ly in heavily regulated domains, but also in others, it is
most often mandatory to carefully document the work
performed, how the system should operate, what it can
and cannot do, and how it needs to be tested. Having ex-
perience with complex projects in any regulated area can
be of huge benefit for any other regulated domain.

Aviation and aerospace are just two more examples of
complex branches where the development environment
is characterised by rigorous regulatory requirements, a
focus on quality and risk management, interdisciplinary
collaboration and the integration of advanced technol-
ogies. Companies must remain agile and proactive in
addressing these complexities to successfully bring safe
and effective medical devices to market.

27

Requirements engineering as part of
systems engineering

A defined systems engineering approach as described
by INCOSE (International Council on Systems Engineer-
ing) is becoming more and more important because
the industries are increasingly confronted with complex
projects. For companies acting in heavily regulated en-
vironments which develop complex smart devices, sys-
tems engineering is an effective approach to address
their challenges. As a transdisciplinary and integrative
approach to enable the successful realisation, use and
retirement of engineered systems, it uses systems princi-
ples and concepts, as well as scientific, technological and
management methods.

The V-model: Demonstration of
converting stakeholder needs into
capabilities

The V-model (or Vee model) in systems engineering is a
visual framework that illustrates the systems develop-
ment lifecycle in a structured, sequential manner. It em-
phasises the relationship between each development
phase on the left side of the ‘V’ and its corresponding val-
idation or verification activity on the right side.

There are three specific SE technical pro-
cesses where the requirements engineer is
strongly involved:

• Business or mission analysis

• Definition of stakeholder needs and
 requirements

• Definition of system requirements

These steps define the stakeholder needs and require-
ments and further convert the stakeholder, user-orient-
ed view of desired capabilities into a technical view of
a solution that meets the operational needs of the user.
The system requirements become the foundation for
architecture, design, implementation and verification.
By establishing RE in this segment of the SE lifecycle,
we keep the requirements visible, verifiable and aligned
throughout the entire lifecycle.

Five causes of project
complexity (not only in
regulated sectors)

Interconnectivity
Systems are no longer isolated – they con-
nect with apps, cloud platforms and other
devices, increasing interface and integra-
tion complexity.

More functionality
More functionality increases complexity
because each additional feature introduc-
es new interactions, dependencies and
potential points of failure, making the sys-
tem harder to understand, maintain and
manage.

Shorter development cycles
Shorter development cycles create pres-
sure to deliver high-quality project results
quickly.

Cybersecurity
In connected environments, systems face
constant threats.

Evolving regulations
The project must adapt to changing rules
and compliance requirements.

28

Complexity demands more than knowing
the craft

Experienced requirements engineers know the craft and
the essentials – all the context, use case and activity di-
agrams and how to elaborate requirements based on
these fundaments. However, the challenge only starts
when the requirements turn from static artifacts to liv-
ing interconnected assets that need management across
tools, teams and time. It requires systems thinking, col-
laboration and adaptability.

ALM tools: A good start, but not the finish
line

ALM (Application Lifecycle Management) tools are cru-
cial in regulated domains like medical devices, finance
and aerospace because they help manage software de-
velopment from start to finish, ensuring compliance and
quality.

Requirements that were elicited and elab-
orated out of the requirements engineer-
ing artifacts are stored and managed in
text form in an ALM tool – which is, of
course, already a great start. However,
the era of storing requirements in spread-
sheets is behind us.

Moreover, requirements engineering artifacts are stored
in different documents or different tools, and it is chal-
lenging to keep these diagrams updated and aligned
during the project and especially also during the opera-
tion and maintenance phase. Sometimes, it can happen
that tools like Microsoft Visio have been already decom-
missioned before the project is finished, and thus the
diagrams are lost or can no longer be maintained. And
in which project does one not wish for a single source of
truth?

Technical processes for:
•	 Business or mission analysis
•	 Stakeholder needs and requirements definition
•	 System requirements definition
•	 System architecture definition
•	 Design definition
•	 System analysis

Technical processes for:
•	 Operation
•	 Transition
•	 Validation
•	 Verification
•	 Integration
•	 Implementation

Integration, verification,
and validation planning

Integration, verification,
and validation planning

Ar
ch

ite
ct

ur
e i

nt
eg

ra
tio

n a
nd

ve
rif

ica
tio

n
Architecture decom

position

and definition

System
development

Solution/system
development

Lower-level
system element

realisation

Lower-level
system element

realisation

Lower-level
system element

development

Upper-level
system element

development

Figure 1: The V-model

Adapted from INCOSE SEH, 2023 (Forsberg et al., 2005)

Integration, verification,
and validation planning

29

Design traceability and impact awareness
– A missing link

Another big challenge in complex projects arises if the
Requirements Engineers do not know which system
functions or components are impacted by their require-
ments. Or, the case may be that they do know, but it is
not properly documented and transparent for the pro-
ject. Each requirements engineer should be able to track
the key requirements against the design (know the del-
ta). Therefore, in addition to traces being maintained
between requirements and from requirements to test
cases, the connection between requirements and their
associated design and architecture elements needs to be
maintained as well.

Our experience has shown that requirements engineer-
ing is not only a key component of the systems engi-
neering process. RE itself also benefits from the systems
engineering approach, especially when it comes to Mod-
el-Based Systems Engineering (MBSE).

MBSE arrives on the scene

Model-Based Systems Engineering (MBSE) is a standard-
ised methodology used to facilitate requirements, de-
sign, analysis, verification and validation in regard to the
development of complex systems. Unlike document-cen-
tric engineering, MBSE centres around models of system
design. The increase in digital modelling environments
within the industry over the last couple of years has di-
rectly impacted the pace of the MBSE uptake. In January
2020, NASA observed this trend and reported that MBSE
“has been increasingly embraced by both industry and
government as a means to keep track of system complex-
ity.” As far as the methodology is concerned, MBSE rep-
resents a collection of related processes, methods and
tools.

The INCOSE Systems Engineering Vision
2020 (2007) defines MBSE (Model-Based
Systems Engineering) as:

The formalised application of modelling
to support system requirements, design,
analysis, verification and validation activ-
ities beginning in the concept stage and
continuing throughout development and
later life cycle stages.

From a requirements engineering point of view, it is im-
portant to contribute to the model by creating artifacts
like activity and sequence diagrams and – of course –
elaborated requirements. As soon as the system design
and architecture are available, the requirements can be
traced to the corresponding elements of the model. This
way, a relationship between the text-based requirements
and the model elements is established and maintained.

Model-Based Systems Engineering (MBSE) plays an im-
portant role because it enhances clarity and communica-
tion among stakeholders through visual representations,
facilitates early validation and verification of require-
ments, and supports better risk management by allowing
for simulation and analysis of complex systems. MBSE
promotes traceability, ensuring that all system elements
are aligned with requirements, and enables iterative
development, making it easier to adapt to changes. Ad-
ditionally, it improves collaboration among cross-func-
tional teams and provides a structured approach to man-
aging complexity, ultimately leading to more efficient
and successful system development.

30

Cost-benefit relationship

Implementing MBSE requires bigger
upfront investments compared to
traditional approaches. Time and
resources are needed early in the
lifecycle – for tool integration, mod-
elling, training, and adapting work-
flows. However, these initial efforts
are strategic investments. Projects
that adopt MBSE realise significant
returns in the later stages of develop-
ment, especially during verification,
integration and compliance. Under-
standing this relationship is key. Ana-
lysing both the cost drivers of early
MBSE adoption and the value levers
in later phases helps build a strong
business case for change. Common
early investments include process

alignment, tool configuration and
model creation; downstream gains
include faster traceability, reduced
rework, easier change management
and smoother regulatory audits.
When viewed across the full lifecycle,
the economics of MBSE clearly fa-
vour long-term efficiency and prod-
uct quality.

As soon as change management is
required and a function needs to be
changed, the requirements engineer
can easily identify the correspond-
ing requirements. Conversely, when
a requirement changes, we can see
which functions or parts of the mod-
el are impacted. All diagrams are part
of the model representing a single
source of truth. This applies not only

to the development phase but also
to operation and maintenance, when
documentation becomes even more
important.

MBSE offers a range of significant ad-
vantages. It ensures that the model
is inherently consistent, which sup-
ports full traceability through se-
mantic relationships. This enables
clear links between requirements,
design elements and system behav-
iour. MBSE also supports high levels
of reuse, improving efficiency and
reducing error rates across the de-
velopment lifecycle. Moreover, Re-
quirements Engineers can derive re-
quirements systematically from the
model itself, providing grounds for
automated document generation.

Conceptual design Preliminary design Detailed designs Manufacturing and acquisition

MBSE Traditional SE

•	 Early defect detection
•	 Reuse
•	 Risk reduction
•	 Improved communication

•	 Usage in supply chain
•	 Product line definition
•	 Standard conformance
	 and traceability

Factors related to MBSE gains

9

8

7

6

5

4

3

2

1

0
0		 2		 4 		 6		 8		 10

No
rm

al
is

ed
 sy

st
em

 li
fe

 c
yc

le
 co

st

Figure 2: Key factors related to MBSE investments and gains

•	 Cost of process definition
•	 Infrastructure cost
•	 Training cost
•	 Model development

•	 Model verification
•	 Model curation
•	 Configuration management

Factors related to MBSE investment

30

Time

Source: Azad M. Madni * and Shatad Purohit, 2019, researchgate.net

31

Practical case: A complex diagnostic
system

In our wide experience in the MedTech area, we once
accompanied the development of a fully automated di-
agnostic system capable of measuring different parame-
ters – all in a compact form factor.

In such a system, several factors play a crucial role:

•	 Ambitious product vision and scope
•	 Market competitiveness and cost

sensitivity
•	 Advanced technological development
•	 Extensive integration of hardware and

software
•	 Rigorous regulatory and compliance

framework
•	 Complex project management

Using an MBSE approach, the development team linked
each stakeholder requirement to a system function,
component and test case. Changes in one area – mean-
ing a new regulatory requirement for bilirubin measure-
ment – automatically propagated through the model,

revealing the impact on architecture and verification
plans. This traceability ensured confidence in compli-
ance, minimised late-stage rework and supported faster
documentation generation for regulatory submissions.

Conclusion

Integrating systems engineering and
MBSE does not only mean using new tools
or methods. It means making a compa-
ny-wide shift in how the organisation thinks
and works across disciplines. Making that
step requires both technical expertise and
knowledge of change management. Having
an experienced partner by your side helps
in figuring out complex projects both in reg-
ulated and non-regulated areas. The differ-
ence does not simply lie in implementing
frameworks, but in tailoring them to the
industry-specific context and internal ca-
pabilities, and ensuring that every step on
the way is aligned with the overall strategic
goals.

32

About ERNI

ERNI stands for Swiss Software Engineering. What are we
really interested in? How we can support you and your em-
ployees better than any other company in developing and
marketing software-based products and services. Our glob-
al platform for software development, in combination with
a sound understanding of the market, forms the framework
for our customers’ success. Our team also implements com-
plex projects, empowers people and delivers outstanding
customer solutions in the shortest time. We apply the Swiss
mentality with behaviours such as consensus building, prag-
matism, integration, reliability and transparency on a global
scale – and have done so since our foundation in 1994 to-
gether with our great team, which is the basis for successful
software projects. Today, the ERNI Group employs more than
800 people worldwide.

About .experience

In this magazine, which is published a couple of times per
year by ERNI, we provide information about important learn-
ing experiences that we have had in our daily work in the are-
as of collaboration, processes and technology.

Imprint

Issue 1/2025

ERNI
Swiss Software Engineering
betterask.erni

Publisher
ERNI Management Services AG

ERNI Locations
ERNI Schweiz AG
��Bern
Zurich
Lucerne
Lausanne
Basel
ERNI Consulting España S.L.U.
Barcelona
Madrid
Sant C. del Vallès
ERNI Development Center Spain, S.L.
Valencia
ERNI (Germany) GmbH�
Frankfurt
Munich
Berlin
Stuttgart
ERNI Development �Centre Philippines Inc.
�Manila
ERNI Development Centre Romania S.R.L.
Cluj-Napoca
ERNI Singapore Pte Ltd.
Singapore
ERNI (Slovakia) s.r.o.
Bratislava
ERNI USA
New York

Contact
ERNI Management Services AG
Löwenstrasse 11 I 8001 Zurich
Email: marketing@betterask.erni
Phone: +41 58 268 12 00
Web: www.betterask.erni

ERNI on the social networks

© 2025
by ERNI Management Services AG

mailto:%20marketing%40betterask.erni?subject=
http://www.betterask.erni
https://www.facebook.com/ERNIgroup/
https://www.instagram.com/ernigroup/
https://www.linkedin.com/company/erni/posts/?feedView=all
https://x.com/i/flow/login?redirect_after_login=%2FERNI
https://www.youtube.com/channel/UCkMDlbcnDtaGBAZyMeDQjSQ

33

